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Presentation Functions, Fixed Points, and 
a Theory of Scaling Function Dynamics 

Mitchell J. Feigenbaum I 

Presentation functions provide the time-ordered points of the forward dynamics 
of a system as successive inverse images. They generally determine objects con- 
structed on trees, regular or otherwise, and immediately determine a functional 
form of the transfer matrix of these systems. Presentation functions for regular 
binary trees determine the associated forward dynamics to be that of a period 
doubling fixed point. They are generally parametrized by the trajectory scaling 
function of the dynamics in a natural way. The requirement that the forward 
dynamics be smooth with a critical point determines a complete set of equations 
whose solution is the scaling function. These equations are compatible with a 
dynamics in the space of scalings which is conjectured, with numerical and 
intuitive support, to possess its solution as a unique, globally attracting fixed 
point. It is argued that such dynamics is to be sought as a program for the 
solution of chaotic dynamics. In the course of the exposition new information 
pertaining to universal mode locking is presented. 

KEY WORDS: Scaling; thermodynamics; period doubling; mode locking; 
dynamical systems; chaos; renormalization group. 

1. I N T R O D U C T I O N  

The attempts to understand the full microscopic structure of chaotic 
dynamical motion succeeded through renormalization group-like treat- 
ments for a variety of transitional phenomena. The upshot of that work is a 
complicated delineation of the parameter space as well as the phase space 
marked by scaling phenomena. An important idea in that work was that 
the dynamics under the fixed-point map inherits from the fixed-point 
equation determining it a rich set of scaling symmetries. Indeed, the trajec- 
tory scaling function determined from the fixed point allows the full deter- 
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mination of the orbit (and its Cantor set closure), or, Fourier transformed, 
the power spectrum given some low-resolution scale-fixing data. This infor- 
mation is embedding-free (an invariant--indeed the maximal invariant) 
and allows such computations whatever the embedding dimension of the 
phenomenon. The objects determined by these scaling functions are true 
"multifractals" in the present parlance, but of the richest variety with an 
infinity of scales. 

As one pursues more chaotic, higher-dimensional strange attractors, it 
appears unlikely that a fully microscopic scaling function theory can be 
offered. At least provisionally, one has turned attention to various dimen- 
sion-related notions of mere thermodynamic descrition. This raises 
questions as to just what these degenerate objects and their interrelations 
depend upon, how they are to be calculated, and their extensions and 
generalizations. A particular question of outstanding interest is the deduc- 
tion of the numerically well-established dimension of the "gaps" in the set 
of all mode-locked intervals of quasiperiodic motion--the computation of 
average quantities from a highly complex microscopic distribution. 

The crux of the above question is that, given a highly variegated set of 
microscopic scalings which determine average quantities as a subset of this 
full information, can one undo the labor of their extraction and find a 
better-behaved, simpler substrate from which the averages easily follow? 
The goal of this paper is to first present such machinery--that of so-called 
"presentation functions"--and then learn how fixed-point dynamics, 
scallings, and these new objects are all interrelated. 

The plan of the paper is as follows. In the second section I extract the 
presentation function of period doubling dynamics from the fixed-point 
equation of the latter, and discern in it the schema of organizing arbitrary 
objects constructed on binary trees. In Section 3 I show how t.o 
immediately write down the thermodynamics given a presentation function 
by explicitly writing down a functional operator form of the "transfer 
matrix." I illuminate these notions by way of examples in Section 4 and 
present numerical evidence as to how mode locking thermodynamics might 
be derived. In Section 5 the notion of generalizations of the machinery to 
arbitrary trees, complete or "pruned," is developed. In Section 6 I invert the 
exposition and discover how the period doubling dynamics for a given tree 
can be obtained from its prior specified presentation function, thereby 
further exposing the "heart" of the mode locking problem and paving the 
way toward a new method of obtaining the fixed-point function. In 
Section 7 I relate presentation functions to scaling functions, the latter a 
special parameterization of the former. In Section 8 I explicitly write down 
all successive approximations to the computation of the scaling function. In 
Section 9 I present a dynamics in the space of scalings that (as a numerical 
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observation in higher orders of approximation) possesses the solution of 
the equations of Section 8 as a globally stable fixed point and suggest that 
a new possibility for the rigorous proof of the isolated solution to the fixed- 
point equation is at hand. In a final section, I take stock of this offering 
and contemplate its meaning and possible future directions. 

2. PRESENTATION F U N C T I O N S  

The dynamics of the period doubling fixed point ~1) provides a scheme 
for the organization of objects definned by a regular binary tree. The fixed 
point obeys the equation 

c~gZe ~ = g; g(0) = 1 (2.1) 

where ~ denotes the linear transformation of multiplication by ~. The 
function g is understood to possess (usually a quadratic) critical point at 
X ~ 0 .  

Denoting the critical value by Xo, 

Xo = g(O)= 1 (2.2) 

define the nth image under g of Xo by x.  : 

x , =  g"(x o) = g"+ l(O) 

Observe that 

(2.3) 

(2.4) X2n+ 1 = g Z n + 2 ( O )  = o ~ - l g " +  1~(0) = ~-lXn 

a n d  

x2 =g2"+l(O)=g- l (xz ,+l)=g l~-lx,=(ctg)-~(x,) (2.5) 

Since g is unimodal, there are two inverses of g. However, g alternately 
maps a central domain to a right domain, and g2 maps within either of 
these domains. Thus, x2, is always in the right domain that includes the 
critical value Xo. Thus, g t of (5) is the right inverse of g, that is, the 
inverse of the right half of g restricted to a domain strictly excluding the 
critical point, and so of bounded nonlinearity. 

Let us denote the two results, (2.4) and (2.5), by 

x2,+~=F~(x,), e=0 ,  1 (2.6) 

Fo(x) = (~g)-l(x) (2.7) 

Fl(X ) = ~ - I x  (2.8) 

so that 

Further, let us regard F0 and FI as the two inverses of a "unimodal" map E 
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Fig. 1. The graph of the expanding map E for the quadratic period doubling fixed point. 
Fi~l=ctx, Fol=Ctg(x). The Cantor set is covered by the range [Xl, x3] of F 1 and [x 2, xo] 
of Fo. 

(it can be verified that  F o contracts,  so that  E is expanding).  E is deicted in 
Fig. 1, and is defined on the two disjoint intervals [x l ,  x3] and Ix2, x0]. It 
is immediately verified from (2.1) and the content  of  (2.4) and (2.5) that  

Eg 2 = gE  (2.9) 

that  is, E conjugates g2 to g. Thus, the period doubl ing attractor,  the 
closure of  the orbit  of  Xo, is that  Can to r  set for which the center piece is 
mapped  to the entire set by :( and the r ight-hand piece is mapped  to the 
entire set by :(g. 

Notice that  E is defined on two intervals; E 2 is defined on four disjoint 
intervals, etc. The domain  of  E" is a cover of  the Can to r  set by 2" disjoint 
intervals. The intersection of  the domains  of  E" over all n is the Can to r  set 
itself. E thus "presents" the Can to r  set and is called its "presentat ion 
function. ''2 Had  we replaced :(g by an approximat ing  linear map, we see by 
the above that  a two-scale Can to r  set would have been constructed. 

2 The ideas of presentation functions are sprinkled in the literature. The name arose in 
discussions between D. Sullivan and myself. To my knowledge, its role here in carrying full 
dynamical information is new. 
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Let us consider E in the spirit of a dynamical system itself. Specifically, 
let us consider the set of all inverse images of Xo under E. Denote the index 
r of an xf n) by its binary expansion 

r=an. . .e l ,  ai=O, 1 (2.10) 

so that r = 0,..., 2 n -  1 for any point in the set of nth inverse images. By 
(2.10) we immediately see that 

x~"! ~, = r e ,  o ro2 . . . . .  r~o(Xo)  (2.11) 

Since 

Xo = X2xo = Fo(xo) (2.12) 

Xo is a fixed point of Fo, so that, by (2.11), the first 2 n-  1 inverses of the nth 
set make up precisely the ( n -  1)th set of inverses. Thus, 

x ( , + r )  =x( , )  (2.13) 
0 �9 - - 0 8  n �9 �9 �9 8 1  8 n - " - E l 

r 

and the superscript (n) is superfluous: a point with the same evaluated 
index (leading 0 s's) is the same at all levels possessing it. 

But, xn as defined in (3) is the nth image under g of Xo. Thus, the 
inverse under E of a given index is precisely that iterate of the forward 
dynamics of g. I will develop this observation later: namely, that to a given 
presentation function E, one can associate a period doubling fixed point, 
the dynamics of which agrees with the inverses under E. That  is, to an a 
priori specified Cantor  set, one can associate a dynamics that possesses the 
Cantor  set as its attractor. Before doing so, however, let us investigate the 
thermodynamics of the Cantor  set given its presentation function. 

3. THE T H E R M O D Y N A M I C S  OF P R E S E N T A T I O N  F U N C T I O N S  

By thermodynamics I mean the deduction of variables and their 
relations to one another that in some well-defined sense are averages of 
exponential quantities defined microscopically on a set. 3 The exponential 
quantities here are the lengths of intervals covering a set. 

Notice by (2.11) that an x (~ is obtained by n contractive mappings, so 
that x~en . . . e l  is weakly dependent upon the higher indexed (leftmost) e's. 

3 These ideas appear in the classical literature, and can be found in refs. 2 and 3. The notation 
here employed and the important focus on return times appears in ref. 4. The above work 
expositing Markov graphs for golden mean rotation should be understood as a serious 
elaboration upon ref. 5. 
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We are thus naturally led to approximations (not always actual covers in 
generalizations to follow) to the set by a set of 2" intervals with each 
interval defined by the endpoints 

X (n+l) and x ("+1) (3.1) 
0 a n  �9 �9 �9 e l  1 g n  �9 " " ~1 

Let us then denote an indexed nth-level interval length by 

_ x ( . +  1) _ x ( . +  1) ( 3 . 2 )  z ~ ( n ) ( ~ n  " " " ~ 1 )  - -  O ,~n ' " ,~ l  l e n " a l  

By (2.11), we can estimate 

A(")(~, "'" e l )  = F~ . . .  F~ Fo(x  (~ - F~ . . .  F~ FI (X  (~ 

~ F ; ~ ( F ~ : . . . ) F ' 2 ( F ~ 3 . . . )  ...F;,(V~r+~ . . . ) . . .  (3.3) 

The idea of (3.3) is that for n large, asymptotically each of the derivatives is 
taken at an argument insensitive to the highest indexed e's so that each F~ 
is asymptotically linear over the required range. This follows for F~ that are 
differentiable, contractive, and of bounded nonlinearity. [A weakening of 
contractive is allowed to include [F'(x)[ = 1 at the boundary of definition.] 
The A (') will then be bounded by exponentials in n, that is, loosely, 

[ z ~ ( n ) ( S n  ' ' "  e l )  [ ~ e ,h(~,..~,) = e H(,...~O (3.4) 

where, by the above reasoning, it can easily be seen that h has increasingly 
weak dependence upon low- index  ds. (I shall return to this mat te r - -  
generally the matter of scaling--later.) 

Accordingly, in strict analogy to statistical mechanics, it is natural to 
consider the sum 

y~ I~(")(~....~1)1~~ y~ e - ~ ' ( ~ ' ~ ' )  (3.5) 

Since H is extensive in n, it is seen that the sum in (3.5) is the canonical 
partition sum for a statistical mechanical system of n "spins" ei one each at 
each lattice site i of a one-dimensional array. With "interactions" falling off 
with site separation, one expects the thermodynamic limit 

[ A ( ' ) ( e , . . . ~ l ) [  ~ ~ 2 nF(fl) (3.6) 
. ~  o o  

to go through (in the sense of logarithms). This "free energy" F(f l )  
expresses the thermodynamic relation between the variables F and ft. 

Notice that fl/4 such that 

F(fl/4) = 0 (3.7) 
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is "special" in that the sum has no exponential growth as the covering 
intervals are successively refined. Thus, flH is to be identified with the 
Hausdorff dimension of the set. (If the "approximations" are as optimal as 
their definition suggests them to be, /~H will be the Hausdorff dimension.) 
Thus, /3 is related to "generalized" dimensions of the set. 

Let us now proceed formally. Defining 

,~(/~) -= 2 - F(/~) ( 3 . 8 )  

(3.6) asserts that 

and we seek an eigenvalue equation determining 2(fl). This is elementary to 
obtain from the F~; all we need do is use (3.3) in (3.9), writing the latter as 
an iterated sum: 

2 (A~")(c,,'"etII ~ . . . .  2 IF2,(f~,+i "")Is ~ [N,-I(F~,.F~,+, "")1~"" (3.10) 

Notice that the sum over e,_ ~ and all lower-e sums to its right depend only 
upon F~F~,+,... defined by the outer sums. Aceodingly, writing 

@r-l(F~rVer.,  "" ") ~- ~ IF[ - I(F~rF~,., "" ")l e 2 IF;,-2(F,r-,(F~r'" " ) ) l~""  
~,-, ~,-2 (3.11) 

we then have 

0,(F~,.~ . . . ) = ~  IF[,(r~,+~ . . . ) l~r_ , (F~r(F~,+~ ...)) (3.12) 
~r 

Denoting any possible point F~r+~F~,+~... by x, we have that (3.12) reads 

4G(x) = ~ rr/(x)l~O,_ ~(F~(x)) (3.13) 

Since (3.13) is a linear transformation, Or(x) asymptotically in r behaves as 

Or(X) ~ 2"O(x) (3.14) 

where 2 is the largest eigenvalue obeying 

2tp(x) = ~  Ig;(x){ p O(F~(x)) (3.15) 
8 

Since the sum of (3.10) is ~0,-,~ 2", the 2 of (3.15) is 2 of (3.9) and (3.8), so 
that (3.15) is the desired eigenvalue equation for 2(fl). 

[Although t)(x) by its definition was defined only for x in the 
"attractor" which can be proper (Cantor) subset of the interval, with F~ 
differentiable enough, (3.15) determines its extension to all x.] 
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Thus, given the fixed point g(x) for quadratic period doubling, (2.7) 
and (2.8) entered in (3.15) explicitly determines the equation for the ther- 
modynamics of the period doubling attractor. It is useful, however, to write 
down and solve (3.15) for simpler presentation functions (i.e., when the F, 
are explicitly available). Accordingly, let us analyze both a trivial problem 
(a two-scale Cantor set) and highly nontrivial one (the parameter axis for 
subcritical quasiperiodic motion). 4 

4. EXAMPLES OF T H E R M O D Y N A M I C S  

1. Write C( 1.~ __0.1, SO that 

FI(x) = - a x x  

and replace -,co of Fig. 1 by 

(4.1) 

Fo(x ) = 1 + ao(X-  1) (4.2) 

with 
0 < a 0 < a l < l  

Then (3.15) becomes 

2r = a ~ ( - a l x ) +  ao~(1 + a0(x - 1)) (4.3) 

(4.3) clearly possesses the solution 

0 = const, X = a{ + ag (4.4) 

It is also easy to see that for each n > 0 there is a 0n, a polynomial of 
degree n in x, and 2, = a f ( - a l ) " +  ag +'. However, the eigenvalue (4.4), 20, 
exceeds all these 2n, and so (4.4) is the solution. 

2. Consider the binary Farey tree shown in Fig. 2, constructed by 
placing 

p @ p ' _ p + p '  
q q' q+q'  

between every pair of previously determined (all prior levels) fractions. It is 
easy to show that the nth layer of the tree consists precisely of all those 
fractions 

1 
[c l ' ""  ck] = 1 ' ck >~ 2 (4.5) 

c 1 + ~  
c2 + ... 

4 An initial exposition of these ideas can be found in ref. 6. More examples of this machinery 
and a discussion of the spectrum of (3.15) appear in ref. 7. 
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Fig. 2. Binary  Farey  tree. 

for which 
k 

ci = n + 2 (4.6) 
l 

Define now a pair of transformations that determine the (n+  1)th layer 
from the nth: 

Fo: [cl,..., Ck] ~ [Cl + 1, C2,... , Ck] 
(4.7) 

El: [ct,..., Ck] ~ [1, c 1,..., ck] 

It follows from (4.6) that (4.7) will inded accomplish its defined task. BY 
(4.7), 

l 1 
F l ( [ c j  ..... c~] )  = 1 . . . .  1 + [cl , . . . ,  ck] 

17 
c x +  "'- 

1.e., 

and similarly, 

1 (4.8) 
F1(x) = 1 + x 

x 
Fo(x ) = - -  (4.9) 

l + x  

We now regard these F~ as the inverses of E drawn in Fig. 3, with Fo 
the left inverse and FI the right inverse. 

Starting at X~o~ 1/2, X~ol)=Fo(1/2)= 1/3, x] l )=F~(1 /2)=2/3 ,  and, 
generally, the 2 n nth inverses of 1/2 are precisely the nth layer of the Farey 
tree. Notice that F~(0)= 1, so that each F~ becomes marginally noncontrac- 
tive at one endpoint of its domain. The intervals computed according to 
(3.2) are precisely the spacings between the two descendants at level n of a 
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Fig. 3. The presentation function for the Farey model, Eqs. (4.8), (4.9). 

l eve l - (n-1)  parent (for example, 2 / 5 - 1 / 4 ,  the children of 1/3 in Fig. 2). 
Since the tree determines all rationals, the "attractor" that E of Fig. 3 deter- 
mines is the entire interval [0, t ] partitioned at each level in a highly non- 
trivial fashion. The set of nth-level intervals now is a representative "sub- 
covering" of the entire interval. As pointed out elsewhere, the study of these 
intervals is intimately related to the full devil's straircase of mode locking 
intervals for two coupled nonlinear ocillators, so that the results are of high 
physical interest? 

As mentioned at the end of Section 2, it is possible to construct a 
period doubling fixed point the dynamics of which is identical to the inver- 
ses of this E. I have elsewhere determined this so-called "Farey map," 
which has the property that it possesses a periodic orbit of length 2 n, one 

5 1 first invented this "Farey model," itself a correct treatment of subcriticality, as a trial 
problem to understand the organization of the centroids of critical mode locking intervals. I 
learned of the critical problem and its suggestive scaling function from Cvitanovic. The 
essence of the idea that that organization is accomplished by a period doubling fixed point 
(and hence the organization of any complete binary tree) was developed in 1984 in my 
partially circulated and unpublished paper, "The renormalization of the Farey map." The 
present paper now renders that paper essentially defunct. 
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for each n, and of identical marginal stability -1 ,  which are precisely the 
layers of the Farey tree. I shall explore this general matter in the next sec- 
tion. 

Utilizing (4.8) and (3.15), we arrive at the equation 

20(X) ( l + x ) 2 t ~ I 0 ( T ~ x  ) ( l @ x ) l  = + 0  (4.10) 

Despite the marginally contractive behavior of the F~, we know from two 
other independent (one harder, the other much harder) derivations that 
(4.10) is correct. There are some available solutions to (4.10). 

(i) f l= 1--*2= 1, 0 =  1/x. As anticipated, the set has Hausdorff 
dimension flH = 1 and 0 is nontrivial. 

(ii) fl = -n/2, n = 0, 1,..,; 0 now has polynomial solutions, with the 
leading ~ a polynominal of degree n. For example, 2( + 1/2) = 3. 

(iii) As fl--*-oo, 2(fl)~p 2fl, p = ( x / 5 - 1 ) / 2 ,  intimately related to 
the fixed point p = F I ( p )  at which 

F;(p) = _p-2 

(iv) For other fl < 1, ~ has branch point at x = 0; it is shown in ref. 6 
that 

Fln( - : -F)~ l - f l  as f l ~ l  f rombelow 

(v) F(f l )  = o, fl > 1. 

By property (iv), this problem has an infinite-order phase transition at 
f l= 1. (More information can be found in Appendix I of ref. 7. In par- 
ticular, the statistical model is essentially that of a one-dimensional lattice 
gas with a one-particle saturating logarithmic interaction.) 

In order to understand the statistical mechanics connection more fully 
and to better comprehend the period doubling dynamics equivalent to a 
given E, we shall have to turn to the notions of scaling functions. [ first 
comment about generalizations. 

5. OBJECTS ON C O M P L E T E  A N D  R E G U L A R L Y  P R U N E D  
n - A R Y  TREES 

Although we started with period doubling dynamics, it is clear that for 
any presentation function E we can construct a Cantor set and by (3.15) 
immediately write down the functional linear operator (the "transfer 
matrix" of the statistical mechanical analog) whose largest eigenvalue 
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determines the thermodynamic relation of F to ft. The simplest 
generalization away from usual period doubling is the replacement of 
F0 = (c~g) -1 with some other function. More generally, we can write an E 
with n inverses, each then mapping the entire interval to an appropriate 
piece of the set. This is simply to replace a binary tree with a general n-ary 
tree. All of the formulas of the preceding sections remain unchanged, save 
for each 5, which now ranges from 0 to n -  1. 

However, another important class of objects is not yet covered. Con- 
sider, for example E of Fig. 4. The special property is that while any point 
on the F1 arc has two inverses, a point on the Fo arc has only an F1 
inverse. Thus, FIF~, F~Fo are allowed, but FoFo is not. Thus, only x~,...~ 
exist for which no two 0 epsilons can be consecutive. This situation is that 
of the incomplete tree of Fig. 5, which is easily seen to have Fn entries at 
level n, where Fn +1= F,  + Fn_ 1 are the Fibonacci numbers, and 

1 _ x / 5 +  1 
F , ~ p  n; P - 2 

Observe that (3.9) implies that ).(0) is the geometric growth rate of the 
number of pieces (or points) at level n, which for E of Fig. 4 should thus be 

/,//////./'// : 
, /  

/" 

/1 ,/ 
//" 

/ / ' /  

Fig. 4. A presentation function for a golden mean grammar incomplete binary tree: the 
range of Fo is disjoint from its domain. (Section 5). 
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Fig. 5. 

p-~. For fl = 0, (3.15) always possesses ~b = const as its leading eigenvalue 
with 2 = Z ,  1 = 2, and so incompatible with the regularly "pruned" tree of 
Fig. 5 for E of Fig. 4. 

It is easy to find the correct replacement for (3.15). Returning to 
(3.12), we immediately see that if F,r+~=F o, then er cannot take on the 
value zero. Thus, the generic renaming of 

F~r+IF,,+ 2 . . . .  x 

that led to (3.13) makes it impossible to determine the allowed range of 
summation in (3.13). To solve this problem, we simply backtrack one step 
and instead by x denote F~,+~F~+~..., so that (3.15) now reads 

2~b(F~(x)) ~ '  ' e = IF;o(F~,(x))[ ~(F~oF~,(x)) (5.1) 
eO 

where Z'~0 means that F~oF~, must be an allowed composition. 
Let us now denote the restriction of ~ to the range of F~ by r : 

O~(x) = ~(F~(x)) (5.2) 

so that (5.1) now reduces to 

,~r = E' Ir;o(r~,(x))le r (5.3) 
eo 

where again ~',o means that only those eo such that F~oF, I is allowed are 
summed. Equation (5.3) is the correct eigenvalue equation for a "grammar" 
of strings of s of length 2. 

Specializing (5.3) to the tree of Fig. 5, we now have 

2~bo(X) = Ir;(Fo(x))[ e ~l(Fo(x))  

2~bl(x) = IF~(Fl(x))l ~ ~o(Fl(x))  + [r~(rl(x))[ t3 ~kl(r1(x)) (5.4) 



540 Feigenbaum 

or, 

22~91(x) = [FD(F~(x) ) i~ lF~(FoFl (x ) ) lnq / l (FoFl (x ) )+s  

which for fl = O, 0 ~ = const, reads 

22= 1 +2--*2> = x / 5 +  1 = p - 1  
2 

the correct growth rate. 
So far we have treated 2 - e  grammars. For restrictions among n + 1 

epsilons, we again turn to (5.12) and extend (5.1) to read 

, ~ ( L , - . . F ~ ~  IF~'0(F~ ~ ..F~.(x))Ie~,(F~o...F~._,F~.(x)) (5.5) 
s 

where now (5.5) is written only for allowed ~l""en  strings, and Z '  means 
that only allowed strings are summed. Next, we define 

lis~, . . . . .  (x)  = ~s(F~, . . .  F~.)(x) (5.6) 

20~, ..... (x) = ~ '  fF'o(r~,.. .F~.(x))ln~s~o .. . . . .  ,(F~.(x)) (5.7) 
~0 

The form of (5.7) suggests a Markov diagrammatic representation. 
One draws nodes for each allowed string of n e's and unidirectionally links 
one node into another that agrees in its first n -  1 e's with last n -  1 e's of 
the former. Figure 6 represents one equation of the system (5.7) and is self- 
explanatory. To use Fig. 6, the sum of a ip(F~.(x)) timmes an F '  link factor 
for all links into 51-..5, produces 2 times the qs(x) associated with the 
target node e~. . .5, .  Only "legal" nodes are drawn and "legal" links con- 
nect them. For example, the system (5.4) for the tree of Fig. 5 is determined 
by the graph of Fig. 7. 

Fig. 6. 
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IF;(F0(x)[/~ 

IF;(FI(x))I ~ 

IFI(FI(x)I ~ 

Fig. 7. 

For 3 = 0  each link receives the factor + 1; the largest 2 is then the 
reciproval of the smallest positive zero of the determinant of the graph. By 
well-known methods, for Fig. 7 this determinant reads 

,/5-1 ,/5+1 
O = l - z - z 2 ~ z < =  2 ~ 2 >  = z ;  1 -  2 

Should the F's be linear, 2 is again computed from the determinant of the 
graph, the links of which now are constants raised to the power/3. 

We thus see that the machinery of presentation functions easily 
extends to incomplete n-ary trees, and the thermodynamic information is 
readily available. 

6. THE PERIOD D O U B L I N G  D Y N A M I C S  OF A PRESENTATION 
FUNCTION 

I stated at the end of Section 2 that a dynamics can be associated with 
an a priori specified presentation function, in effect reversing the line of 
thought that led to presentation functions. By definition, this dynamics 
should generate the nth inverse images under E by the forward iteration of 
the dynamics. Since the dynamics will either possess orbits of length 2", one 
for each n, or a specified orbit of period 2 ~, the dynamics must be that of a 
period doubling fixed point. Let us now work out this connection. We shall 
see that a new method is afforded for determining these fixed points that 
perhaps can lead to a rigorous proof of their isolated existences. 

In general there are 2 n nth inverses of E, labeled as xl n), i = 0 ..... 2 ~ - 1. 
By (2.6), 

Fj~.(,)~ _ ,~(,+ 1) (6.1) 
" ~ i  ! - -  ~ 2 i + e  

so that 

Defining 

FiFol(X(zT) ) = ~'(") (6.2) ~ 2 i +  1 

go(x) = F1Fo 1 (6.3) 

822/52/3-4-2 
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go provides the map that, applied to points of the right-hand piece of 
Fig. 1, images them to the central piece. Notice that go images points at 
one level into others at the same level n. 

Next observe that the range of F]  on the right-hand points is 

Thus, 

performs the mapping 

F~ (x(2ni )) __ ~(x +r) - -  ~ 2 r ( 2 i +  1)-- 1 (6.4) 

�9 -(') ~ ~(") (6.6) gr: ~ 2 r ( 2 i +  1)-- 1 ~ 2 r ( 2 i +  1) 

so that the central (odd-indexed) points are mapped by the union of the 
restrictions of g, gr, defined on intervals including just those x~ for which 
i + 1 = 2 r (odd). For this to make sense, the intersection of the interiors of 
the domains of any two distinct gr must be empty. Moreover, the interval 
on which gr is defined must include the relevant xl n) for all n. Since all Xzi 
lie within a fixed proper subinterval of the whole interval containing the 
support of E and since F1 is a monotone contraction, this can be ascer- 
tained. In fact, provided E has a "gap" in its dommain of definition, as in 
Fig. 1, these intervals are totally disjoint; whereas, if there is no gap, as in 
Fig. 3, then intervals abut with empty interior intersections. Thus, the con- 
struction is as we have said. It should be noted that the domains of gr as r 
diverges converge toward the fixed point of F~, which, as we shall see, must 
then be the "critical point" of the map g. 

By (6.3) and (6.6) we see that the range of go includes the union of the 
domains of gr; the range of each gr is included within the domain of go- 
Notice by (6.3) that 

g r -  1 = Fo I grF1 = F; -l go grF1 (6.7) 

that is, g2 restricted to the domain of gr for any r~> 1 is smoothly 
conjugated by the Fi -~ part of E to g. Similarly, 

gr-1 = Fo~ g~ goFo (6.8) 

so that g2 restricted to the domain of go is smoothly conjugate by the Fo 1 
part of E to g. Thus, given any E, it serves the conjugating role of (2.9) for 
the g constructed by (6.3) and (6.5). 

So long as F~ is a smooth, monotone contraction with fixed point at 
xc we can smoothly conjugate it to the linear transformation determined by 
its derivative at its fixed point. Calling this derivative ~ x, one has 

F~(xc) = ~-1 (6.9) 

gr(x)  = F~ g o F { r ( x )  (6.5) 
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and (6.7) in these new coordinates reads 

gr_ l = a g  ~ g,~-I  (6.10) 

so that we have the usual period doubling fixed-point equation 

g = ~g2~-1 

which opened Section 2. 
By way of example, if we turn to Example 2 of Section 4 for the Farey 

tree, Fl(x) in (4.8) can be conjugated to homogeneous linear form through 
the fractional linear conjugacy 

~,l=hFlh 1 (6.11) 

with 

1 - x  (6 .12 )  h(x)= l - p-l_____~ x h-l(x)  =--p_l + p x 
l + p x  ' 

yielding 

P~(x) = -pZx, ct-~ = _p2 (6.13) 

and 

Po(X)= 1 + 2px (6.I4) 
2p 1 - x  

This "canonical" form of E is depicted in Fig. 8. 
By (6.3), 

go(x)= 
p Z  2px 
2 p + x  

(6.15) 

with the important property that g~(x) -x ,  so that the fixed point of 
go has eigenvalue -1. Then by (6.5) all the other gr can be explicitly 
computed. This g is the Farey map we have discussed elsewhere (see 
footnote 5), and is exhibited in Fig. 9. 

The reason for considering the Farey tree lies in the numerical fact 
that critical mode locking of oscillators has the property that the com- 
plement of the mode-locked intervals has the universal dimension of 0.87. A 
theory for this numerical result is still lacking. Figure 8 pertains to the 
kindred but simpler subcritical problem, for which the dimension is 1. A 
careful analysis of the subcritical problem reveals that the thermodynamics 



544 Feigenbaum 

1.0 

5 

4 

.3 

.2 

,! 

0.0 

-,2 

-.3 

/ / "  

/ / / /  

j / j / /  

/ / /  
/ / / /  

/ / ' /  

S J ~p 

/ / , / "  

-.3 -.2 -.1 0.0 .1 .2 .3 .4 .5 .6 .7 ,8 .S 1 . g  

Fig. 8. The Farey presentation function of Fig. 3 after the conjugacy that brings F 1 to its 
canonical linear form, Eq. (6.13). 

is saturated by the subtree at golden mean rotation. This part of the tree is 
universally determined by the unstable manifold of the renormalization- 
group fixed point of golden mean rotation. As we have just seen, for the 
subcritical case, h of (6.12) conjugates the entire tree to the golden mean 
subtree. However this works out for criticality, if the result is universal, it 
must also pertain to the unstable manifold of the critical golden mean fixed 
point. Thus there is an F1 which is linear, but the derivative in criticality is 
the renormalized 

6r = -2 .83361. . .  (6.16) 

instead of the subcritical 6 = _ p Z = - 2 . 6 1 8  .... Thus, the arc Pl for the 
critical problem is exactly known to be 

F l ( X )  = ~7ix 

The corresponding Fo is still not available. It suffices to say that it is a 
numerical fact that the critical case is smooth to within 10 -8 (available 
precision) and is very well fit by 

F o ( x ) ~ , x + k ( 1 - x )  v, v~1 .37 ,  k ~ 0 . 4 0 8  (6.17) 
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Fig. 9. 
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The "Farey map" period doubling fixed point, the forward dynamics of which is the 
Farey tree. 

and E is depicted in Fig. 10. The opening of the gap in E of course implies 
a dimension smaller than 1; the fit of (6.16) (theoretical) and (6.17) indeed 
reproduces the numerical 0.87 when entered in (3.15). 

Let us end this section with the determination of g for the 
approximation (4.1) and (4.2) to the E of Fig. 1 for quadratic period 
doubling. We shall discover from this inquiry a general method for 
determing solutions to renormalization-group fixed-point equations. 

We take 

F1 = ~ - lx  (6.18) 

Fo= l -ao (1 -  x) (6.19) 

where (6.18) for the correct Fo is exact. Notice by (6.5) that 

g r  = 1 - % [ 1  - g o ( ~ r x ) ]  

where by (6.3) 

(6.20) 

go = ~-1[1 -- ao~(1 -- x)]  (6.21) 
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Fig. 10. An excellent numerical fit to F0 of Eq. (6.17) for cubically critical mode locking. This 
presentation function, iterated, determines mode locking intervals and the well-known 
fin =0.87 to high accuracy. It is to be noted that since v differs from 1.5, the intermittency 
argument Q-3 is misleadingly unimportant for fin. 

The requirement we impose on {gr} is that they should be the restrictions 
of  some smooth  function with a quadratic maximum at x = 0 [which by 
(6.20) has the critical value of 1]. Not ice  by (6.20) that 

g,(~-'Yc) = 1 - [1  - g 0 ( # ) ]  a~ 

- 1 

Thus, for any ~, if we fix 
0 " 0  = 0~ - 2  

(6 .22)  

(6.23) 

then (6.22) is compatible with 

for 

g =  1 - #x  2 

l - go( ) 

# =  0~2 

(6.24) 

(6.25) 
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Since by (6.21) go entails the unknown c o n s t a n t  o~ -1,  demanding that /~ 
satisfies (6.25), at two distinct values of 2 will determine ~-1. However, 
choosing Fo (as we have) to be the linear arc of (6.19), should the two 
choices of 2 be Xo and x2 of Fig. 1 [so that Xo= 1, x2 =F0(e-1) ] ,  then the 
linear arcs of gr of (6.20) will be a linear polygonal period doubling fixed 
point with inscribing endpoints lying on the parabola (6.24) and so 
possessing an asymptotic quadratic critical point. Thus, set in (6.25) 

1 --  go(1 ) = 1 -- ~-1  (6 .26a)  
/~= 1 

and 
1 -go(X2) 1 --  g o [ F o ( a - 1 ) ]  1 _ a - 2  

# =  x 2 x~ = [ 1 - a - 2 ( I - ~ - 1 ) ] 2  (6.26b) 

Eliminating # in (6.26a), (6.26b) results in a quintie for ~-~ with the root 

= -2.48634...  

with an error of 0.66% from the actual result of -2.502907875 .... The 
polygonal fixed point is depicted in Fig. 11. 

.g . . . . . . . . ~ " -  . ........... 

,8 """ 
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- . 4  - . 3  - . e  - . t  e .e  .~ .2 .3 .4 .s .6 .7 .e .s ~.a 

Fig. 11. The linear polygonal fixed point for "quadratic" period doubling of (6.22) that 
follows from Fo of Fig. 1 replaced by that linear segment that renders g as quadratically 
smooth as possible. 
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Thus, in review, by requesting the {gr} (in some sense) to be the 
restrictions of a smooth, quadratically critical map, I have been led to an 
excellent linear polygonal solution to the fixed-point equation of the period 
doubling renormalization group. I now want to elevate this calulation to a 
systematically exact one. In order to do so, I must first explore the nature 
of approximations of F0 by successively more linear segments, which I shall 
face in the next section through the idea of the scaling function. Having 
done that, in the final two sections I produce the general calculation for the 
fixed point and discover that to all orders (beyond the lowest, as a 
numerical observation) the solution is obtained as a globally stable fixed 
point of a natural dynamics in the space of all scalings. I shall mention my 
grander thoughts of the meaning of this dynamics in a final afterword. 

To fortify the reader, Section 8 is technically arduous, with a rather 
simple final result. In erecting equations directly for the scalings, and 
moreover in discovering a natural and exceptionally well behaved flow on 
them, I believe new ground in being charted and, so beg the reader's 
indulgence. 

7. THE RELATIONSHIP BETWEEN PRESENTATIONS AND 
SCALING FUNCTIONS 

I presented a Markov graphical method of successive approximation 
to dynamical thrmodynamics in ref. 4. The links on those graphs were 
c o n s t a n t s  determined by the trajectory scaling function. In Section 5 (e.g., 
Fig. 7) I have drawn very low-order e x a c t  Markov graphs utilizing presen- 
tation functions. Should one proceed to construct successive higher-order 
duals of the F graphs, the links would have (F')'s of successively restricted 
arguments on them. With F, of bounded nonlinearity, these would 
approach constants, and so, obviously, would be identifiable with 
(constant) values of the scaling function a. I now precisely work out that 
connection. In particular, it shall be possible to understand how an Fo of a 
finite number of linear arcs is an expression of a a of a finite number of 
constant values. Thus, from any smooth nonlinear F~ one directly infers, in 
"modern" parlance, a multifractal of infinite scaling complexity. The ease 
with which one can deduce, for example, the thermodynamics of these 
objects should convice the reader that the machinery I have been erecting 
and discussing in these pages is very powerful. 

The idea of scaling functions 6 is very simple. It is constituted of the 
observation that the quotient of small distances (asymptotically 
infinitesimals) is obviously invariant under smooth coordinate transfor- 

6 The scaling function is invented in ref. 8; see also refs. 9 and 10. 
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mations, and hence under the dynamics itself. That  is, scaling properties 
are well ordered in d y n a m i c a l  order  but not in space. 

Using the e notation of (2.6), define the scaling at a point on the orbit 
by 

X O ~ o  " " " ~ 0  - -  X l ~ m  " "" ~ 0  

o'(e,, - - - %) - (7. ! ) 
X s m ~  m _ [ �9 �9 " 0 - -  X g m e .  m 1 �9 �9 �9 6 0  

where we are reexpressing the idea behind (3.3) that determines the 
smallest distance that can be identified with m + 1 or m epsilons, and form- 
ing their quotient (g denotes the complement of e). Notice that the first of 
the numerator and denominator terms are evaluated at identical dynamical 
indexes, ensuring the invariance of a under smooth coordinate transfor- 
mations. (a is an invariant, and generally a fuller one than the set of all 
periodic orbit eigenvalues, 7 the literature notwithstanding. Indeed, one 
cannot simply follow the Markov idea of the introduction to this section 
simply because thermodynamics and asymptotic exponential quantities are 
degenerate over the fuller information in a.) Employing (2.6), one has that 
(7.1) relates ~ to F: 

F~o . . .  F~, ,Fo(xo)  - F~o . . .  F~ , ,F l ( xo )  
a ( e m " "  %) (7.2) 

F~o " "  F~,,(Xo) - F~o " "  Fe,~(Xo) 

The details to follow will implement the intuitive idea that after enough F's 
have been aplied to Xo, whether the first F is Fo, F1, F~,  or F~,,, the 
resulting x's are all contracted enough toward one another as to lie within 
a single domain over which F is linear, so that the remaining lower-indexed 
F]s produce identical slope factors in numerator and denominator. That is, 
with Fo a finite number of linear restrictions, there is only a finite number 
of distinct values of a no matter how large m is: a depends only upon a 
certain number of the highest indexed e's. Let us see how this works out. 

We begin by defining F(0 ") to be linear over each of the 2" disjoint 
intervals of its domain. Accordingly, set 

(F<0,~) -1 linear on (2k, 2k + 2 "+ 1), 

F ( n )  . X l  O , k "  - 2 n  + k - ' ~  X 2 ( l "  2 n  + k )  

F(on~(Xm) = F(o~.~ rood 2~ 

k = 0  ..... 2 " - 1  (7.3) 

(7.4) 

(7.5) 

Notice in (7.3) that we use the dynamics to partition the domain of F -1 to 
be intervals whose endpoints are closest return neighbors. [The order  of 
the endpoints might be reversed to (2k + 2 n+ 1, 2k) depending upon k.] 

7 Unpublished work of Dennis Sullivan, presented at the 1987 Noto Summer  School, in which 
he establishes the scaling function as the maximal  invariant for C ~ + ~ geometries. 
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Condi t ion  (7.3) by (6.3) now determines restrictions of  go: 

g(n) _ F tF(.)~ -1. (7.6) 
O , k - -  l ' , ' t  O, k l  " X 2 ( k + l ' 2 n ) ' - - I ' X 2 ( k + l ' 2 n ) + l  

and similarly by (6.5) for gr:  

g~n)_ r <.~.~F r (7.7) 
r , k  - -  F o  6 0 , k ~ l  

defined on the doma in  F~(dom go) so that  

g~")' .2n+l)  ~ .2n+i)  ( 7 . 8 )  r , k  " X 2 r ( 2 k  + l + l - -1  X 2 r ( 2 k  + l + l 

The definition of (7.7) is comple ted  with the unders tanding  that  each F 0 in 
it is to be tha t  ~'~") appropr i a t e  to the domain  as given by (7.5). I want  to ~ 0 , k  

explicitly record this. Since d o m ( g ~ ) =  F~(dom g o ) =  ~ - ~ ( d o m  go), we have 

g(~,)k(c~ r X 2 k + e 2 n + l ) _ _  r (n) - F 0 go, k(x2~ + e2.+l) - F~(x2~+ 1+ ~2.+~) 

~r~.) r F ( , ) I , - - F ( . )  . pc , )  p(n) + l ( X z k  e2n+l)  - -  L ~ 0 , 0 J  ~ 0,2 n -  t(2k + 1)mod 2 n " ' ' ~ 0 , 2 ( 2 k  + 1)mod 2 n ~ 0 , 2 k  + 1 + 

(7.9) 

The  most  impor t an t  aspect  of  (7.9) for the extension of the calculat ion of 
a~ at the end of Section 6 is that,  apar t  f rom n o ther  factors, g~ utilizes the 
one restriction F0,o that  includes the fixed point  of F0 at x = x0 = 1. I shall 
pick this up in the next section. F o r  the momen t ,  let us return to (7.2) now 
that  the F ' s  have been explicitly defined. 

Note  that  the r ightmost  n of  the F ' s  of each denomina to r  term in (7.2) 
p roduce  

F~"~_ " "  F ~ _ , F ~ " ) ( X o ) =  X,z. +e~ , . . . . . . .  = X,Z.+k (7.10) 

for some k < 2". By (7.5) we see that  (7.10) is in the domain  of the same 
E(") independent  of  ~. Identically, so, too,  are the n u m e r a t o r  terms O,k 

r~)_~ . . .  r ~ )  r~m(Xo) (7.11) 

It  follows further that  the rest of the leftmost F ' s  (of lower- indexed a's) 
preserve the fact that  each n u m e r a t o r  and d e n o m i n a t o r  x persists to lie in 
the doma in  of the same F restriction. Since each F is linear, we have 

F~o).-.  ~ " )  ~ " ) ~ x  ~ -  F ~"1... F ("> F (")~'~ ~ .t er n l Z S m  I O] g,O ~ra--I gm I"~'0]  

= r~o) ' " "  r~"~)'_._,(xe,.z.+k -- x~rnz.+k) 

and 

F ( n ) . . .  l ~ ( n ) l Z ' ( n ) [ ~  ~ __ 17"(n) F ( n ) l z i ' ( n ) t ~  "l 
eo ~ e m  ~ 0  I,'ll'Ol "t eO " " " em ~ 1  I,'a'O,# 

= F~o)' " " �9 F ~ ) ' .  ~ (xe,.2. + k - -  X s m 2 n  q- k q- 2 n+l ) 
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Performing the quotient of (7.2), we find that the derivatives cancel, and we 
have 

O ' ( g m " " '  / ~ 0 ) =  i f ( e r a '  ' "/;m n)  = X k - - X k + 2 n + l  - - f i n ( k )  ( 7 . 1 2 )  
X k  - -  X k  + 2 n rood 2 n + I 

where 

k = 2 n g m - k  . . ,  - + - 2 0 / 3 m _ n = 0  ..... 2 n + ~ -  1 (7.13) 

Thus, with F(o n~ linearly defined on 2 n intervals, the set of all O'(Xm) 

possesses 2 "§ distinct values constant over all but the highest indexed 
n + 1 e's. Also, 2 n+ 1 independent parameters completely determine the 2 n 
linear functions m,,) (and n o t  just the 2 n slopes - - o , k  J, ~0.k ~'~n)'~ and, as we shall soon 
see, constitutes a most natural parameterization for dynamical purposes. 

8. THE SCALING F U N C T I O N  T H E O R Y  OF THE PERIOD 
D O U B L I N G  FIXED POINT  

Let us review what has been done so far. I started with the usual 
period doubling fixed point g and realized that its dynamics could also be 
determined by the backward dynamics (inverses) of an expanding map E, 
the presentation function. I next observed that the inverses of E, the 
functions F,, most naturally allow the determination of the ther- 
modynamics of the dynamics of g. I next commented that forgetting g, the 
scheme of the F~ is generally applicable to objects defined on trees. I then 
inverted the exposition, showing that the F~ for any tree still determine the 
identical dynamics of some generalized period doubling fixed point that 
can be explicitly constructed from the F's. Moreover, it was shown at the 
end of Section 6 that requiring that fixed point to be smooth is a sufficient 
principle to determine the F, that give rise to it. In the last section it was 
realized that polygonal linear F's are equivalent to piecewise constant 
valued scaling functions, the latter a rich invariant under coordinate trans- 
formations. I am now prepared to again invert the exposition and discover 
how to frame the discussion of the underlying dynamics purely in the 
language of the scalings. I shall proceed to deduce the general equations 
that the scaling function satisfies, and then show in Section 9 that these 
equation can be solved by erecting a natural dynamics on the space of 
scalings which possesses as a globally stable fixed point the scaling 
function, hence the presentation function, and hence the period doubling 
fixed point that expresses the underlying dynamics. 
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Return to (7.9), and notice, as pointed  out  there, that  the index r 
appears  only as the power  of the one restriction Fo, o. By (7.4), Xo is its 
fixed point,  so that  with Xo = 1 and F~,o = ~o, we have 

E ~")~,'~o,o~, = 1 - a o ( 1  - x )  (8.1) 

yielding 

/ 7 ( 0 )  r [ o, o3 ( x ) =  i - t r y ( I - x )  (8.2) 

We can thus rewrite (7.9) explicitly in its r dependence for all r ~> n as 

g(,,~t~, 2,+~) = 1 - , ~ r  rT(~ (8.3) r, k k ~  r X 2 k + e .  ~ O V k ,  e 

where 

r [ ( n ) = l Y o n E 1  .K'(n) F ( n )  p ( n )  l ( X 2 k + l + e 2 n + l ) ' ]  (8.4) - -  4 0 ,  2 n -  1 " �9 �9 ~ k ,  a ~ 0 ,  2 (2k  + 1 ) rood  2 n ~ 0 ,  2k + 

Now,  just  as we observed in(6.23), if we take 

ao = ~2 (8.5) 

then (8.3) reads 

f f ( n )  
. . . .  V k ,  e (8.6) 6r ,  k '~er(n)(tv X 2 k  a . 2 n + l )  = 1 - ( ~  X 2 k + e . 2 n + l )  2 2 

X 2 k + a . 2 n + l  

We now see, in ana logy to (6.24)-(6.26), that  by requiring that  

U~"~ = #,xak+~.a.+x for some # .  (8.7) 

we shall achieve 

(n) . . . .  (r ~> n, all k) gr,~(x) = 1 - # ~ x  2 (8.8) 

where the quotes  abou t  the equals sign mean  that  (8.8) is satisfied just  at 
the endpoints  of  the domains  of  definition of ,~n) Not ice  that  (8.8) is 6r ,  k"  

imposed  only for r >/n. Thus,  the calculat ion of order  n requires that  all but 
the lowest 2" restrictions of  g lie on a parabola .  As n increases, these 
lowest-order  pieces determine the actual  fixed point  g, and  not  a parabola .  
However ,  #~ converges to 1/2 g"(0). Let  us m a k e  sure that  we unders tand  
what  is to be determined.  

The  points  

X2k+~.2n+t , ~ = 0 ,  1; k = 0  ..... 2n - -1  (8.9) 
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are, by (7.3) the endpoints of the range ,~r v(-~ Using (8.4) in (8.7) should ~ - - 0 , k '  

result in a sufficient number of equations to determine the x's of (8.9). 
However, as each r(,o is linear, and by (7.4) obeys ~ 0 , k  

(F (m~-l" (8.10) O , k )  " X 2 k + e . 2  n+l  " - " ~ X k + e - 2  n 

while 

x2k+ 1 = FI(xe)  = ~  

the v~-~ can be parametrized by the x's of (8.9) together with the value of - - 0 , k '  

c~-1. Since, however, we have chosen the scale Xo = 1, we still have between 
~-1 and the x2~ the required 2 "+1 quantities to be determined by the 
system (8.7). More correctly, there is still the extra quantity p,  of (8.7). 
However, the requirement that g possesses a quadratic critical point 
expressed by (8.5) provides the missing equation. We thus conjecture that 
the system of (8.7), (8.5), and x0 = 1 possesses an isolated solution for the 
positive quantities x2k of (8.9). 

The reader should feel that this calculation is far from transparent. So 
it appears at this stage. However, recall that there are also precisely 2 n + t 
values an(k) of (7.12), one of which is a,(0) = ao of (8.5). I promised that a 
was a natural parametrization of the ~'~"~ I shall now show why, and - - O , k "  

reduce the computation to one of systematic ease. 
First, by (7.12), 

~r,(2P(2k + 1)) = X 2 P ( 2 k  + 1 ) - -  X 2 P ( 2 k  + 1 ) + 2" + t 

X 2 P ( 2 k  + 1 ) - -  X 2 P ( 2 k  + 1 ) - 2 n m o d  2 n + 1 

for 2 k + 1 < 2  n + ' - p  

(8.11) 

However, as also expressed by (7.12), 

a , [ 2 P ( 2 k + l ) ] = a [ 2 r + P ( 2 k + l ) ]  all r>~0 (8.12) 

which by (7.1) is again a quotient of differences of x's, but now for 
sufficiently large r (~>n-  p) the image (the index is even) of an endpoint of 
the domain of a g~"~ obeying (8.8); that is, 

x 2 r + p ( 2 k +  1) (n) 2 = gr (x2r+p(2k+l~-~)= 1 (8.13) - -  t l l n X 2 r + p ( 2 k  + 1 ) -  1 

By (8.12), (8.11) is now the quotient of the diferences of the x2's of (8.13). 
However, by (6.4) and (6.18), 

-2r,.2 (8.14) X 2 r + P ( 2 k + l ) _ l  ~-0~  ~ 2 P ( 2 k +  1 ) - -  1 
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so that (8.11) is the quotient of the differences of the squares in (8.14). 
Finally, denoting 2P(2k + 1 ) - 1  = l, we have 

x ~ -  2 X l + 2 n + l  
a,,(l + 1)=  (8.15) 

to be compared with the defining formula 

a ~ ( l ) -  x t -x l+2"+l  , l=0,... ,  2 n + 1 -  1 (8.16) 
X l  - -  X l  + 2 n m o d  2 n + 1 

There is one important proviso on (8.15): its range of applicability is 

/ + 1 = 1  ..... 2n - -1 ,2  ~+1 ..... 2"+1--1  in (8.15) (8.17) 

This follows from the derivation of (8.15); should p = n in (8.11), then k of 
(8.11) must equal zero. But then the second denominator index in that for- 
mula is 2n+ 2 n rood 2 "+1=  0; however, x o is never the image of an x,, 
under g~"), whence the restriction in l of (8.17). Apart from the exceptions 
l +  1 = 0  or 2" (which I shall treat immediately), the content of (8.15) is 
that the one-index advanced a bears the identical relationship to the x2's as 
does the cr of  the unadvanced index to the same, but not squared, x's. That is, 
the full content of the system (8.4), (8.7) is precisely this twice-defined 
encoding of the a's. 

To finish the deduction of the equations, let us turn to (8.16) for l = 2": 

a,(2") = x2, - x32~ 
X2n - -  X 0 

c r ( n ) t x  . ~ ~ ( n ) (  x 
6 n , O  I, 2 - - 1 1 - - 6 n ,  1~ 3 . 2 n - - 1 )  

( n )  . g,,o(X2 - 1 ) -  1 

2 [by (8.8)] 
X2n--  1 

= 1 -x22 [-by (6.4)and (6.18)] 

That  is, 

1 - = , n(2 n)  ( 8 . 1 8 )  

Also, by (8.16) using (6.4) and (6.18), 

x2~ 1 - x3.2,- 1 1 - x2 
a , ( 2 " - l ) = x 2 , _  1 - x 2 ~  l - e - 1  (8.19) 
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However, with l =  2 n + l -  1 in (8.16), again using (6.4) and (6.18), we have 

0..(2 ~ + 1 -  1)~-X2n+I--1--X2n+2--I = __~--I (8.20) 
X 2 n + l  -- 1 - -  X2n-- 1 

Thus, , - '  is also one of the 0. values (the most obvious one) and, with 
(8.19), we have 

1 - x 2 = a . ( 2 " -  1)[1 + 0..(2 " + 1 -  1)3 (8.21) 

Finally, noting (8.5) and (8.20), we can explicitly eliminate ~-1 m 

0.,(0) = [-0.,(2 " + ' -  1)] z (8.22) 

and write down the system of equations that determines o: 

1 - [1 + a . ( 2  " + 1 -  1)] f~n)[0..(i)] 

={1-f~)[-0. ,( i+l)]} '/2, k = l  ..... 2 " + 1 - 1  

where 

(8.23) 

f~m[0.,(i+ 1)3 = 1 -x2k  (8.24) 

meaning that f~,") is that function of the set of one-index advanced 0.'s that 
is obtained by solving the set (8.15) for 1 -x~k  in terms of 1 - x  2, which by 
(8.18) is simply 0.,(2"). The f~")[0.,(i)] on the left-hand side side of (8.23) is 
the same functional form as determined from (8.24) with each 0.,(i+ 1) 
argument replaced by the argument 0.,(i). The positive square root taken in 
(8.23) reflects the fact that Xzk>0 in (8.24). Before going further, let us 
work out the two lowest orders, n = 0, 1, of this theory. 

At n = 0, there are two values of 0., 0.o and 0.1- With k = 1 in (8.24), 

1 -- x~ = 0., = fa(0.(i + 1 )) 

and (8.23) reads 

1 - (1 + 0 . 1 ) 0 . 0  = ( 1  - -  0 " 1 )  1/2 

which together with (8.22), Oo = 0.~, is easily seen to be the earlier result 
(6.26). 

At order n = 1, we can see the machinery generally at work. By (8.22), 

0.0 = 0.1 (8 .25)  
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By (8.24), 

k = l :  

k = 2 :  

k = 3 :  

f/(0-,+ ~) = 1 - x ~  = 0-2 [Eq. (8.18)] 

A(0-,+1) = 1 - x42 x2 - x]  
= X2__X22 ( 1  - - X 2 2 )  = 0-10"2 

2 2 
X 2 - -  X 6 

f3(0-i+ 1) = 1 - x62 = (1 - x~) + ~ (x 2 - xg) 
X 2 - -  X 0 

= 0-2(  1 - -  0-3)" 

(8.26) 

(8.27) 

(8.28) 

Entering these results in (8.23), we have 

k = l :  1 - ( 1 + 0 - 3 ) 0 - 1 = ( 1 - 0 - 2 )  1/2 

k = 2 :  1 - (1 + 0-3)o-00-1 = (1 - 0-10-2) 1/2 

k = 3 :  1 - ( 1  +0"3)0"1(1 - - 0 - 2 )  = [1 -0-2(1 - - 0 - 3 ) ]  1/2 

(8.29) 

(8.30) 

(8.31) 

Together with (8.25), (8.29)-(8.31) determine a 
a o . . . a 3 ~ ( 0 , 1 )  given numerically by 

0-o= 0.1573393... 

0-1 = 0.1759069... 

0-2 = 0.4310046... 

0-3 =0.3966602...  

unique solution for 

with 1~1 = 0 - 3 1  = 2.521049 .... an error similar to that of the n = 0 solution of 
(6.26). As we proceed to higher n, the solutions geometrically converge 
toward the actual result. 

There are several comments  to make at this point. The first is that the 
extraction of 1 - x 2 k  for each k from (8.15) is a straightforward task, so 
that any equation in any order of approximation can immediately be writ- 
ten down. However, as the solution to the full set of equations for a given 
order n becomes arduous and numerically problematic, I leave this exercise 
to the reader. Second, there is an important  systematics that determines 
half of the order n + 1 equations from all those of order n, so that the 
solution to order n, doubled up by pairs, exactly satisfies the first half of 
the order n + 1 equations. By the bounded nonlinearity of Fo follows the 
exponentially weak dependence of a on lower-index e's. This means that 
the remaining half to the order n + 1 equations fail to be satisfied with 
exponentially small error for large n. Thus, there is good theoretical reason 
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to believe that successive orders of approximation define a convergent 
theory. These results follow from the exact linearity of FI: 

rl(xk) - -  r l { x  k + 2 . +  1) 
a ,+  1(2k + 1 )=  

F1 (xk) - Fl(Xk + 2. mod 2" +I) 

_- x~-xk+2~ = ~ . ( k )  

X k  - -  X k  + 2 n rood  2 n+ l 

It is then easy to see that by also replacing a ,+ l (2k)  by cr,(k), the first 
2 n+l of Eqs. (8.23) at order n + 1 becomes precisely the full set at order n. 

However, as I have already alluded to, having written down the 2 n +1 
equations of order n in no way implies that we are close to a solution. 
Indeed, even using the trial approximation (the doubling up by pairs 
mentioned above) 

a ,  + 1 (2k + 1 ) = a ,  +1(2k)  = an(k ) 

while precisely satisfying half the order n + 1 equations, and failing to 
satisfy the second half with exponentially decreasing errors, still fails to fall 
with the basin of attraction of Newton's method to the order n +  1 
solution. However, we can do much better. 

9. D Y N A M I C S  IN THE SPACE OF SCALINGS 

I showed in the last section that the scalings a can be written as a 
quotient of differences of either coordinates, or in critical image, the 
squares of coordinates. (I used this idea in the past to determine the 
discontinuities of a, which, indeed, are exponentially graded accoding to 
closeness of approach to the critical point of g.) The formulas that fix ~r are 
precisely the requirements that both evaluations agree. 

Inspecting (8.15), one sees that 

2 2 X l _ ~ _ X l + 2 2 + l  an(l+ 1)=  x l - x t + 2 " + l  = a , ( l )  (9.1) 
X 2  - -  X/2+ 2 n rood  2 n + 1 X l  ~- X l  + 2 n m o d  2 n + 1 

o r  

an( l+ 1) xl+2.+~- X/+2. mod2n+L 
1 =  

a.(l) X l -~- X l + 2 n m o d  2 n + l  

n (9.2) O ' e f  t 

so long as [x~J --~ 1. Thus, provided that 

/mod  U=~0 for r=O(n)  (9.3) 

822/52/3-4-3 



558 Feigenbaum 

o,(l+ 1) is exponentially (in n) close to on(l). This suggests a simple 
strategy to (recursively) enfore the agreement of (8.15) and (8.16): Assume 
a given set of a's and update them (by a dynamics in the 2" + l-dimensional 
space of o~) by (i) inverting (8.15) to determine the x~k in terms of the 
a,(i); (ii) taking square roots  to produce the X2k; and (iii) using the x2k in 
(8.16) to determine new a',(i). That is, we have a transformation T in the 
space of scaling functions 

o', = T, Eo,] (9.4) 

which we now hope relaxes to the common solution of (8.15) and (8.16). 
For l's not "too" dyadically small [i.e., (9.3)], we anticipate from the 
discussion of (9.1) and (9.2) that 

o's(l- 1 ) ~ o,(l) (9.5) 

Thus, the great bulk of the dynamics of T is the simple difference delay 
dynamics of (9.5) with more serious right-hand sides at the dyadically 
smallest values of l (e.g., 2"). This implies in order n with 2 "+1 o's, after a 
major discontinuity, another 2 ~+~ steps are required for this significant 
modification to propagate "around" the set of o's in order to be transfor- 
med again. Thus, if we denote by 2n the eigenvalue of the T, convergence 
to the stable fixed point a*, then we expect 

22,"+'.-~ A (9.6) 

Indeed, after minor details are fixed [as before, l +  1 4 2 "  in (8.15)], 
this program works perfectly. Thus, as I determine numerically, (9.6) is 
correct with 

A ~ 0,70e • (9.7) 

However, not only does T possess o* as a stable fixed point, but so far I 
can determine numerically (although my search has not been exhaustive), 
T also possesses o* as a global attractor with basin {(x~,..., x2,+l)E 
(0, 1)2"+1}. One can verify this in the lowest-order models where for all but 
2" sigmas, all other a N exactly satisfy the delay dynamics of (9.5). To fix 
ideas and to explain part of the last comment, let us now work out the 
n = 0, 1 scaling dynamics using (9.5) taken with identity in I u, where I is 
(0, 1). 

The first step is a simple piece of systematics. Return to (8.15) and 
evaluate 

2 2 
X 2 n - r ( 2 i +  1 )  - -  1 - -  X 2 n - r ( 2 i +  1 ) +  2 n + l  - -  1 

o~[2" - r (2 i+  1)] = 2 2 
X2n  - r(2i + 1 ) -- 1 - -  X2n  r(2i + 1 ) + 2 n - 1 m o d  2 "  + 1 

n>.r>~l, 2 i < 2  r+l (9.8) 
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Using (6.4) and (6.18) as in (8.14), we obtain 

X 2 i  __ 2 X2i+2r+l , n>~r>~l, 2 i < 2  r+l (9.9) 
a , [2"  r(2i+ 1)] = X~i__X29i+2rmod2r+l 

and the related result 

a .E2~-r (2 i+  1 ) -  13 = X 2 i  - -  X 2 i  + 2 r + l  

X 2 i  - -  X 2 i  + 2 r m o d  2 r + 1 ~ 

n>~r>~O, 2 i < 2  r+l (9.10) 

The important content of these formulas is that the right-hand sides are 
independent of n: the equation that relates a , ( l -  1) to o,(l) is unchanged in 
all higher orders n + p if l is replaced by 2Vl. The notion of the set of a ,  
interpreted as the nth-order step function approximant to the scaling 
function o( , )  follows from this observation when ~ is defined at level n as 
l/2"+ 1: 

o,(r)=a,(l) for ~(l/2"+i,(l+t)/2 "+1) (9.11) 

The precise definition of T, of (9.4) now follows. Throughout the rest 
of the discussion the subscript n on cr, shall be implicitly understood. First, 
by (8.18) 

x2 = E1 - O ' ( 2 n ) ]  1/2 (9.12) 

Combining (8.19) and (8.20), 

1 - - X  2 (9.13) 
a ( 2 " -  1 ) -  1 + a ( 2  " + ~ -  1) 

Now interpret (9.13) to determine the new (transformed under T) o ( 2 " -  1) 
by replacing x2 in it by the square root of x 2 determined by the old o(2") as 
given in (9.12). Denoting transformed values by primes, we thus have 

1 -- [-1 -- O'(2n)] 1/2 
(i) a ' (2"--  1 )=  1 +a(2 ,+1__ 1 ) (9.14) 

This first equation required special treatment because of (8.17), now 
expressed by r < 1 in (9.9). As a (numerically, e.g.) systematic procedure, 
we save ( 1 - x 2  2) [ = a ( 2 " ) ]  and ( 1 - x 2 )  obtained by 

( l_x2)=l_[ l_ (1_x2)]1 /2= ( l - x 2 )  
1 + [ 1 -  ( 1 -  x2)] '/2 (9.15) 
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With these quantities known, we start with r = 1 in (9.9), allowing i = 0, 1, 
and rewrite it as 

(ii) (1 - x~i+2r+l) = (1 - xZi) + ~r[2 . . . .  (2 i+  1)] 

x [(1 - -  X2i2 + 2 '  m o d  2r+1)--(1- x22i)] (9.16) 

The ( 1 - x 2 ) ' s  on the right-hand size are either (1 -Xo2)=0  or ( 1 - x ~ )  
already saved. Thus, (9.16) determines the next two x2~, ( l - x ] )  and 
(1-x62), and the square root formula of (9.15) for general x2k produces 
(1 -x4) and (1 -x6 ) .  Both of these quantities and the previous ( 1 -  Xo)= 0 
and ( 1 -  x2) now substituted in the right-hand side of (9.10) produces 

(1  - -  X 2 i + 2 , + 1 )  - -  (1  --X2i ) 
(iii) a'[-2" "(2i+ 1 ) -  1] (9.17) 

( 1  - -  X 2 i +  2 r m o d 2 r + t )  - (1 - x2i)  

We now systematically increase r = 2,..., n, the last step at r = n determining 
a'(2i), and, in particular, a'(0). The only a '  n o t  produced by (9.10) is 
a ' ( 2 n + l - 1 )  (i.e., - ~  1). But this, of course, is where we inject the 
required nature of the algebraic singularity of g (i.e., quadratic) at this 
critical point, (8.22): 

(iv) a'(2 " + ' -  1 )=  [a ' (0)]  1/2 (9.18) 

This completes the precise implementation of T, and is an algorithm that 
simultaneously produces all the x2, together with all the a's. At the heart of 
this dynamics is an insistence upon taking square roots, an inherently 
stabilizing operation. Verified to be convergent in low order, the difference 
delay intuition suggests a rapid convergence with order n and persisting 
stability. Numerically this is fully borne out to the degree that choosing the 
initial a's randomly within (0, 1) always leads to convergence to the unique 
fixed point a*. Let us finish this discussion with the n = 0 and n = 1 delay 
models. 

Setting r = 1 in (9.9), we have, using (9.12) for x2, 

i = 0 :  a(2" 1)= 1 -x2-  --'~ X 4 = [1 - -a (2"  1) 0"(2n)]1/2 (9.19) 
1 

and 

i =  1' a(2-2")  x2 - x~ (9.20) = x ~ -  1 ' x 6 =  {1 - a ( 2 n ) [ 1  - a ( 3  '2n--1)]} 1/2 

Substituting in (9.10), we have the transformation formula 
1--X 4 1 -  [ -1-  a(2")a(2" 1 ) ] 1 / 2  

a'(2 " - 1 -  1 )=  l - x 2  1 -  [ 1 - a ( 2 n ) ]  1/2 (9.21) 
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and 
1 , _ x 2 - x 6 _ )  { 1 - c r ( Z n ) [ 1 - o ( 3 - Z n - 1 ) ] }  1/2- [ 1 - ~ ( 2 ~ ) ]  1/2 

o J(3 . 2  n - 1  _ 
x2 - 1 1 - [1 - a(2n)]  1/2 

(9.22) 

Rationalizing 

By (9.25a) 

so that  (9.25b) becomes 

O ' N - - I , t + N  ~ Y t + N  = 

f f  N, t --  l + N ~ ~ 2 N - -  l , t  ~ X t  

1 - ( 1  - Xt) 1/2 

1 ~ - X t + N _  1 

(9.27) 

(9.28) 

F rom  these results, we can see how (9.2) works out. 
numera to r  and denomina to r  in (9.21), we have 

a,(2 n 1 1)=or(2  n 1) l + [ 1 - - O ' ( 2 n ) ]  1/2 (9.23) 
1 + [1 - ~ ( 2 " ) c r ( 2 "  1)3t/2 

and an analogous result for (9.22). Notice  that  the ratio of the sums of 
roots  is of order  1. As we write down the formulas for ~'s at dyadically 
larger indices [i.e., larger r in (9.9) and (9.10)3, the analogous ratio of sums 
of roots  will be exponential ly closer to 1 as more  and more  products  of ~'s 
(smaller than 1) appear  subtracted from 1 within the square roots. That  is, 
(9.5) will become exponential ly accurate for a's of larger r. Thus, as the 
order  n increases, the new equations,  all for the largest r ( = n )  become 
exponential ly closer to (9.5), and the dynamics "saturates." The first 
approximat ion  to n --* oo is obta ined by using just (i) of (9.14) for l =  2" 
and for all o ther  l = 1,..., 2" + 1 _  1, 

c~'(l - 1 ) = or(l) (9.24) 

Thus, the r = 0 model  dynamics is 

at_ 1.,+ 1 = err.t, I= I,..., N - 1 ,  N + I , . . . , 2 N - 1  (9.25a) 

1 - (1 - au,,) 1/2 
O'N__ 1,t + 1 (9.25b) 

1 + G 2 N _  1, t 

~2N- 1., = (~r0,,) I/2 (9.25C) 

where the time index t means [crt] = T ' [~o] .  Let  us compute  the solution 
to (9.25). Write 

X t ~ - - ( T 2 N  1,t,  Y,=au_1. ,  (9.26) 
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By (9.25a) again, 

O'0, t + 2 N - - I  = G N  l , t + N  -'~ Y t + N  (9.29) 

which by (9.25c), produces  

X t + 2 N  1 = ( Y t + u )  1/2 

o r  

X,+ N - I  = ( y,)~/2 (9.30) 

Substi tut ing (9.30) in (9.28) produces  the system 

X,+N 1 = (Y,) ~/2 (9.31a) 

1 - ( 1  - X , )  1/2 

Y t + N =  I -}- ( Y t )  1/2 (9.31b) 

Next,  defining 

and ignoring the 
we have 

xk = Xku (9.32a) 

Yk = YkN (9.32b) 

-- 1 in X t + N- I (order  1/N; we are interested in N - ~  oo), 

xk+ 1 = (Yk)  1/2 

1 - (1 - xk)  1/2 
Yk+ 1 -- 1 + (yk)  1/2 

(9.33) 

The  fixed point  of  (9.33) is just  x = ~rl, y = ~o of (6.26) and is the n = 0 
fixed point.  The  eigenvalues at  the fixed point  are, however,  different f rom 
the n = 0  dynamics of  (i)-(iv).  The  system (9.33) is the r = 0  n--+ ov 
dynamics.  The eigenvalues of (9.33) at its fixed point  are 

21 = - 0.832289.. . ,  22 = 0.688872... (9.34) 

Since x k -  x * ~  2~, by (9.32), X k u - - X * ~  2~, and so 

X2N k --  X*  ~ (~2)k  (9.35) 

Tha t  is, each 2 N =  2 "+1 iterates of (9.25) const i tut ing one entire passage 
th rough  all a's, converges  with eigenvalue 22, so that  A of (9.6) is 

Ao = 212 = 0.692705... (9.36) 

Ao turns out a l ready to be an order  1 %  result for the full n --+ ~ dynamics.  
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The r = 1 n --* oe dynamics follows by adding (9.21) and (9.22) for the 
quarter-way a's to (9.14) for the half-way a and (9.25a) for all others. 
Denoting N =  2 " -  1 here, and X, = a4u- l . t  with analogous quantities for 
the other or's, and the N-step values by lowercase letters as in (9.32), we 
obtain 

X r ~ b/1/2 

[ 1  - y ( 1  - x ) ]  1/2 _ (1  - y)l/2 
yr  = 

1 - -  (1 - -  y ) 1 / 2  

(9.37) 
1 - - ( 1 - - y ) 1 / 2  

Z t ~  
1 + u 1/2 

1 - (1 - yz) 1/2 
U r ~  

1 - ( 1  - y)1/2 

The fixed point is x = ~ 3 ,  Y=a2 ,  z = a l ,  U=ao  of the n =  1 dynamics, 
which is given below (8.31). The spectrum of (9.37) at its fixed point is 

2c = 0.90623457 e -+ i~/2- 0.051493628) 

21 = 0.83050196 (9.38) 

22 = -0.81607177 

Since N =  2" 1, )4 are now the full passage through the eigenvalues of a, 
and 

A 1 = 24 = 0.6744698e • (9.39) 

The phase of A~ means that convergence is a damped sinusoid of 
period ~ 30.50 (of full 2 n +1 steps over the whole system). The modulus has 
changed ~ 3 %  from Ao. Indeed, the small departure of the phase of 2c 
from ~/2 is the very near agreement of 22 to the negative real 21 of (9.34). 
Also, 22=0.68973.. .  in (9.38), to be compared to the subdominant 
22 = 0.688872 of (9.34). That is, to surprising accuracy, the r = 0 model 
faithfully follows the r =  1 one. The actual n--+ oo numerics are barely 
distinguishable (for n up to 8, or 512 a's) from those of (9.37). 

10. A F T E R W O R D  A N D  C O N C L U S I O N S  

In the last two sections we learned how the specification of the critical 
point singularity of the underlying dynamical map g determines the scaling 
function globally along the orbit. Since ~ is invariant under smooth trans- 
formations, it is in particular almost a constant of the motion, since g is 
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smooth away from its critical point, and hence a everywhere is determined 
by the critical point singularity of g. The ~r itself is a rich invariant 
encoding full knowledge of the temporal ordering along a strange set, and 
hence determining the refinement of a coarse-grained specification of the set 
by prologing the data xt to successively larger ranges of t. Technically, as 
seen in the discussion surrounding (7.12), half of the information in a is 
encoded in orbital eigenvalues; the other half of the information addresses 
the O(1) coefficients of exponential quantities by determining the "finite"- 
size widths of the intervals obtained by the partitioning by the inverses 
under the presentation function. Let me be more precise. 

By (3.3), the size of the intervals A<n)(en---~) is es t ima ted  by 

A<m(~ . . . e l ) ~  D(F, I  . . . F~,) (10.1) 

By choosing not Xo, but rather within zlc")(O---O) the periodic point 

x *  = F~ , . . .  F~ , (x*)  (10.2) 

the derivative in (10.1) is effectively the eigenvalue of this orbit. This 
derivative in turn behaves as 

a ( " ) ( e , . - . s l ) ~ ( ~ , . . - s , )  ~ ( e ,_ l . . . 51 ) . . . a (~ - . - s l )  . . . .  kcr~ff(s,-.-sl) 

(lO.3) 

or ,  

in aer f (e , . . ,  el)"~-i In ]D(F~I"" . F J [  (10.4) 
n 

It is precisely these asymptotic (in n) growth rate exponents that are deter- 
mined by the slopes of F~(x).  Moreover, it is only this half of the infor- 
mation of ~ that is "tested" by the thermodynamics. It follows that f(~)  
fails to encode the information of how the local linear segments of g are to 
be fitted together, and so is f a r  from the full information invariantly 
available descriptive of the strange set (in addition to the complete loss of 
t-ordering information). 

To put this differently, for k =  O(1) in (10.3), that equation asserts 
that the actual A's are of bounded variation from the A's es t ima ted  by 
k = 1. When we now reconsider the quotients leading to (7.12), we see that 
in the nth approximation to or, asymptotically in m, the leading m - n  
derivatives that determine cre~ exactly cancel in numerator and 
denominator, so that tr is actually the quotient of the k's of (10.3) them- 
selves. Thus, ~ presents much finer information, inclusive of O(1 /n )  terms, 
than the orbital eigenvalues and f(~), which determine information up to 
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bounded variation only. This extra information allows orbit prolongation 
and attractor refinement not possible with the limited exponential infor- 
mation of (10.4). 

Accordingly, a full and prescriptively useful end product of the 
"solution" of a dynamics x,+l  = g(x,)  is the determination of its scaling 
function a. But then, how can it be that a is always determined from the 
equations that follow by eliminating the x~ from (8.15) and (8.16)? The 
answer to this query is the content of Section 6, specifically (6.10), which 
asserted that F~ determines a period doubling fixed point. Inspection of the 
argument of Section 6 reveals that the "full" tree topology of inverses of F's 
as in Fig. 1, in contrast to an F of Fig. 4, is responsible for being led into 
period doubling. Indeed, an analysis like that of Section 6 applied to Fig. 4 
would lead to a fixed-point dynamics of the golden mean renormalization 
group (1~'12) and not that of period doubling. The analysis of Section 8 
would then lead to a's determined by the ratios of golden mean differences. 
I have presented the ideas of the golden mean scaling function in the 
context of circle maps elsewhere. (13) For the case of Fig. 4, the resulting a is 
not that of a circle map, although of largely identical organization. 

We thus see that the topology of intervals encoded in the topology of F 
(as in Fig. 4) determines the equations that fix a. The golden mean 
topology on a circle is so much more important than that of Fig.4 on an 
interval that I have not bothered here to present the scaling function theory 
for the problem whose thermodynamics is given by (5.4). 

I have not done so because I have already worked out the theory for 
circle map topologies. That is, one can construct presentation functions on 
the circle. It turns out that there is a unique choice of the form of the 
golden mean fixed point that emerges whose scalings are identical to those 
of the original (i.e., not the fixed point) map for which E is expanding, and 
this choice is not that of Rand et al. (~2) After F is known, the exact 
thermodynamic eigenvalue equation can be written down, which turns out 
to be subtly different from (5.4). There are a sufficient number of new 
ingredients in this circle map theory to make it inappropriate for this 
article. A sequel devoted to these new ideas is in preparation. 

This brings us to a discussion of Sections 8 and 9, especially the latter. 
Section 8 is a culmination of a long effort to determine equations for the 
scaling function intrinsic to a itself. (That is, not just determining a as a 
detailed calculation available from the fixed-point dynamics g.) a is the 
desired outcome of a calculation; g is the specification of the dynamics: it is 
the nature of the orbits of g that we want to know. Writing down g is 
writing down the equations o f  motion: since g is universal, at least we have 
written down a very generally applicable equation. But the real problem is 
to determine the solution to these equations, which are chaotic and derived 
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from a highly nonlinear dynamics. As I have stressed, a is the solution we 
seek in that it provides simple "genetic" building knowledge of the solution 
rather than a mindless enumeration of the ordered set {x,} of chaotically 
varying quantities. To generalize away from period doubling, we want to 
know how to generally write down equations for a of a chaotic motion, 
and not just simulate the dynamics and "show" the solution in some com- 
plicated plot that merely reaffirms to the observer that the motion is 
chaotic--although at least not random. This is why I believe the ideas of 
the scaling function theory of Section 8 to be so important. But just so, I 
regard the dynamics in the space of scaling functions, Section 9, to be more 
important still. 

As Section 9 stands, the a dynamics is an "arbitrary" invention; as it 
might seem, merely a technical device to obtain the solution to the a 
equations of Section 8. While true enough, I also believe otherwise. 

As a mathematical point, the numerically observed good behavior of 
that dynamics (i.e., possessing a globally attracting fixed point), if proven, 
constitutes a proof of the uniqueness of the period doubling fixed point. 
(One would have to show that the solution for g just on the Cantor set is 
the restriction of an analytic function to prove existence by this line of 
thought. For the golden mean circle map fixed point, the "Cantor set" is 
now the entire circle, so a full solution is obtained now requiring proof of 
its analyticity.) 

At least from this paper we know that nice scaling dynamics exists for 
a variety of highly nontrivial a's. However, there is a conceptually deeper 
point: the equations of physics through the principles of inertia and 
causality are local (differential) equations of motion. Like the local (in t) 
dynamics x t + l =  g(xt), they fail to present in any transparent manner the 
inherently nonlocal "genetic" principle of a scaling function: the successive 
products of a's as in (10.3) relate distant pieces of a solution to one another 
through common ancestors. What we must do is to implement that 
"change of variables" in the originally offered equations of motion to 
produce dynamical equations for a itself. If we can do so, for a's of just a 
few distinct values in some approximation, by easy calculation we can then 
compute the salient features of the solution and not the enumeration of the 
individually uninteresting x,. Section 9 represents the first coming to grips 
with what such "intelligently" formulated dynamics should look like. 

I want to conclude this paper with a conceptual analogy to (I hope) 
better illuminate the content of the last paragraph, and then exhibit an 
actual example of a true scalinglike dynamics drawn from the study of 
cellular automata. 

Consider a cloudlike initial configuration of some fluid equation (a 
classical field theory). Imagine that the density of this configuration 
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possesses rich scaling properties (e.g., a fixed spatial scale exponent over 
many decades.) Moreover, imagine that at successive moments of time it 
also possesses these scaling properties, although possibly variable in time. 
From this we should surmise that the instantaneous velocities should also 
possess similar scaling properties. Imagine that these scalings are easily 
specified, that is, we have discerned in this complex spatial object some 
prescriptive rules that if iterated would construct it. Now let us contem- 
plate how we advance this structure in time. By the locality of the field 
equations we must actually spin out this iterative construction in order to 
provide the equations with the sort of initial data they require. Now we can 
advance the structure a step ahead in time. But what do we now have? 
Simply an immense list of local density and velocity values of high local 
irregularity. Of course, if we possess a good algorithm, we could now from 
this new pabulum of data again discern the scaling information--perhaps 
evolved--that we knew about anyway. This is obviously a foolish double 
regress. Since our informed understanding lay in the scaling description, we 
should obviously have transcribed our "true" local dynamics into one 
pertinent to these scalings, rather than mount a numerical program that 
strains the most powerful machines we possess. That is, the solution in the 
usual sense of our local field theories is apt to be a mindless enterprise 
when the solutions happen not to be simple. In this sense, our theories, 
while "true," are useful only to God, which seems not to be the hallmark of 
what humans adjudge to be truth. 

As our last heuristic example, consider the time-dependent block 
probabilities of a one-dimension, nearest-neighbor, two-state-per-site 
cellular automaton. Denoting these probabilities in an nth approximation 
by P,(~,,~.--eleo), we will cast an analogy between the P,  and ~, .  As with 
the A,, the P,(em'"eleo) are assembled from Markov transition 
probabilities a , ( e , . . .  ~o) linking the 2" nodes labeled by e , - . .  e~ of a strictly 
probabilistic Markov graph (the sum of the transition probabilities out of a 
node sums to one). Assigning nodal probabilities H , ( e , . - . e l )  determined 
by the stationarity of the process then produces the nth-order probabilities 

P,(~,.--Co) = o,(o-, .. �9 ~o) H , ( e , . . .  el) (10.5) 

The point of this construction is that with the ~, randomly assigned, these 
P ,  are then a random a priori set of probabilities satisfying the 
Kolmogorov consistency conditions (i.e., that these P ,  summed over right 
or left e's consistently produces the lower-order P , - r  probabilities). The 
minimal-information extension of these P ,  is now simply 

P n + r ( e n +  ..... , F'n+ l ,  'g . . . . . .  CO) 

= (Tn(en+ ...... ~ r ) ' ' "  O . ( e . +  1 ..... e l )  P . ( r  Co) (10.6) 
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so that the extensions Pn+r are constructed in precisely the same way as 
the A {") of (10.3). The important idea of Gutowitz et al. (t4) (in addition to 
the Baysean extension method of the P,+r equivalent to the Markov 
diagrammatic method just presented) is that the dynamical action of the 
automaton relates the P~ at time t + 1 as an appropriate (depending upon 
the rule of the automaton) function of the P~+2(en+l, ~,...,e0, e_l) for 
nearest neighbor rules (whence the additional en+l and e 1). By (10.6) this 
becomes a dynamical rule for the evolution of the basic entities entities an, 
Thus, in formal analogy, the kind of dynamics discussed in Section 9 is the 
actual temporal dynamics of these automata. That is, the idea of a 
dynamics not for the "obvious" variables P(.. .  gin.--g0"..), but rather for 
the "scaling" elaborative variables an is the actual dynamics of these 
systems, so that the scheme of evolving "evolutionary" variables, with no 
requirement of approach to, say, a fixed point, is here realized. 

Thus, in conclusion, I hope to have exposed some glimmers of a new 
program of dynamics for problems in which our accustomed partial dif- 
ferential fled equations lead us into a hopeless morass of boring numerical 
simulation. My examples to date are indeed too special, but perhaps 
suggestively illuminating. 

A C K N O W L E D G M E N T S  

I have deeply profited from ongoing discussions with Dennis Sullivan 
over the last several years. This includes important points of understanding 
of presentation functions and his penetrations into the meaning of the 
period doubling scaling function, suggesting that its (a's) smoothness 
should lead to a principle for its determination. 
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